Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey
ثبت نشده
چکیده
Western Turkey has been dominated by N–S extension since the Early Miocene. The timing and cause of this N–S extension and related basin formation have been the subject of much debate, but new data from the Bigadiç borate basin provide insights that may solve this controversy. The basin is located in the Bornova Flysch Zone, which is thought to have formed as a major NEtrending transform zone during Late Cretaceous-Palaeocene collisional Tethyan orogenesis and later reactivated as a transfer zone of weakness, and which separates two orogenic domains having different structural evolutions. Volcanism in the Bigadiç area is characterized by two rock units that are separated by an angular unconformity. These are: (1) the Kocaiskan volcanites that gives K/Ar ages of 23 Ma, and (2) the Bigadiç volcano-sedimentary succession that yields ages of 20.6 to 17.8 Ma. Both units are unconformably overlain by Upper Miocene-Pliocene continental deposits. The Kocaiskan volcanites are related to the first episode of volcanic activity and comprise thick volcanogenic sedimentary rocks derived from subaerial andesitic intrusions, domes, lava flows and pyroclastic rocks. The second episode of volcanic activity, represented by basaltic to rhyolitic lavas and pyroclastic rocks, accompanied lacustrine–evaporitic sedimentation. Dacitic to rhyolitic volcanic rocks, called the Sındırgı volcanites, comprise NE-trending intrusions producing lava flows, ignimbrites, ash-fall deposits and associated volcanogenic sedimentary rocks. Other NE-trending olivine basaltic (Gölcük basalt) and trachyandesitic (Kayırlar volcanites) intrusions and lava flows were synchronously emplaced into the lacustrine sediments. The intrusions typically display peperitic rocks along their contacts with the sedimentary rocks. It is important to note that the Gölcük basalt described here is the first recorded Early Miocene alkali basalt in western Turkey. The oldest volcanic episode occurred in the NE-trending zone when the region was still experiencing N–S compression. The angular unconformity between the two volcanic episodes marks an abrupt transition from N–S collision-related convergence to N–S extension related to retreat of the Aegean subduction zone to the south along an extensional detachment. Thrust faults with top-to-the-north sense of shear and a series of anticlines and synclines with subvertical NE-striking axial planes observed in the Bigadiç volcano-sedimentary succession suggest that NW–SE compression was reactivated following sedimentation. Geochemical data from the Bigadiç area also support the validity of the extensional regime, which was characterized by a bimodal volcanism related to extrusion of coeval alkaline and calc-alkaline volcanic rocks during the second volcanic episode. The formation of alkaline volcanic rocks dated as 19.7 0.4 Ma can be related directly to the onset of the N–S extensional regime in western Turkey. Copyright # 2005 John Wiley & Sons, Ltd.
منابع مشابه
K-T magmatism and basin tectonism in western Rajasthan, India, results from extensional tectonics and not from Reunion plume activity
Evolution of sedimentary basins took place in the Barmer, Jaisalmer and Bikaner regions during K-T (Cretaceous-Tertiary) time in western Rajasthan, India. These intra-cratonic rift basins developed under an extensional tectonic regime from early Jurassic to Tertiary time. Rift evolution resulted in alkaline magmatism at the rift margins. This magmatism is dated at 68.5 Ma and has been considere...
متن کاملGEOCHEMISTRY AND TECTONIC SIGNIFICANCE OF BASALTS IN THE DARE-ANAR COMPLEX: EVIDENCE FROM THE KAHNUJ OPHIOLITIC COMPLEX, SOUTHEASTERN, IRAN
The Kahnuj ophiolitic complex, a part of the Jazmurian ophiolitic belt, is located on the western boundary of the Jazmurian depression and is bounded by two major fault systems. There is a well-preserved, ophiolite pseudostratigraphy of early Cretaceous to early Palaeocene age and has a bearing on the Mesozoic development of southeastern part of Iran and adjacent region. The Kahnuj ophiolitic c...
متن کاملHydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia)
Tunisia is rich in geothermal resources from ancient civilizations. Hydrothermal activity in Tunisia has been related to three main stages: magmatic and tectonic activities, eustatisme (Atlantic and Mediterranean coupling) and climate change. The principal factor and the responsable of this phenomenon is the meteoric water by piston flow processes. It constitue the catalyst of volcanism. The Tr...
متن کاملPetrology, geochemistry, and petrogenesis of mafic dykes from the Kermanshah Ophiolite in Sahneh-Harsin area of Western Iran
The Kermanshah ophiolite complex is a part of the Mediterranean–Zagros–Oman Tethyan ophiolites, located in the structural–tectonic zone of western Iran in the northern part of the Zagros main thrust. Doleritic sheeted dykes are well exposed within the ophiolite in the south of Sahneh. These dykes contain high MgO, Na2O, low TiO2 (2O5, and K2O contents, and high FeOt/MgO and LILE/HFSE ratios. Th...
متن کاملPhysico-chemical chaterctrestics of the Ararat basaltic lavas from the North Gerik (NW Azerbaijan) area, based on mineral chemistry of clinopyroxene: implications for magma evolution in post collision origin
1-Introduction North western Iran are neighboring of the largest Turkey volcanic centers (e.g. Ararat, Nemrut, Tendürek and Süphan volcanoes), within the Turkish-Iranian orogenic plateau. Quaternary basaltic lavas from NW Azerbaijan are related to the on-going Arabia-Eurasia collision zone, and inherited by subduction of the Neo-Tethyan Ocean at a Late Eocene age (~ 35 Ma). The Quaternary lava...
متن کامل